

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Compiler Design (18CS0514) Course & Branch: B.Tech - CSE

Year & Sem: III-B.Tech & I-Sem Regulation: R18

UNIT –I INTRODUCTION AND LEXICAL ANALYSIS

1	a List the various phases of a compiler.	[L1][CO1] [2M]
	b Differentiate tokens, patterns, and lexeme.	[L4][CO1] [2M]
	c Differences between compiler and Interpreter.	[L4][CO1] [2M]
	d Define the Role of Lexical Analyzer.	[L1][CO1] [2M]
	e List the various error recovery strategies for a lexical analysis.	[L1][CO1] [2M]
2	Explain the phases of a compiler with neat diagram?	[L2][CO1] [10M]
3	a) Explain in detail about the role of lexical analyzer in Compiler Design.	[L2][CO1] [5M]
	b) Write about input buffering?	[L2][CO1] [5M]
4	Explain about Language Processor in compiler Design?	[L2][CO1] [10M]
5	Discuss the following terms	
	a) Specification of Tokens	[L2][CO1] [5M]
	b) Recognition of Tokens	[L2][CO1] [5M]
6	a) Explain the Structure of Compiler?	[L3][CO1] [5M]
	b) What is the need for separating lexical analysis and syntax analysis?	[L2][CO1] [5M]
7	Explain LEX Tool with a Lex Program?	[L2][CO1] [10M]
8	Write short notes	
	a) pass and phases of a compiler	[L3][CO1] [5M]
	b) Bootstrapping	[L3][CO1] [5M]
9	How to design the compiler by using the source program position:=intial+rate*60.	[L1][CO1] [10M]
10	Write short notes	
	a) Application of compiler technology	[L3][CO1] [5M]
	b) Compiler construction Tools	[L3][CO1] [5M]

Course Code: 18CS0514

QUESTION BANK 2020-2021

UNIT –II SYNTAX ANALYSIS AND TOP DOWN PARSING

1	a Define LL(1)?	[L1][CO2]	[2M]
	b What is Role of Parser?	[L1][CO2]	[2M]
	c Problems in Top Down Parsing?	[L1][CO2]	[2M]
	d Define Context Free Grammar.	[L1][CO2]	[2M]
	e Define Ambiguous grammar?	[L1][CO2]	[2M]
2	a) Construct the recursive decent parser for the following grammar?	[L3][CO2]	[5M]
	E-> E+T/T	[][]	[]
	$T \rightarrow T^*F/F$		
	$F \rightarrow (E)/id$		
	b) Explain about Left factoring and Left Recursion with an examples?	[L2][CO2]	[5M]
3	Calculate FIRST and FOLLOW for the following grammar?	[L3][CO2]	[5M]
	a) $E \rightarrow E + T/T$		
	$T \rightarrow T F/F$		
	$F \rightarrow (E)/id$		
	b) S->xABC	[L3][CO2]	[5M]
	A->a bbD		
	$B->a \varepsilon$		
	C->b ε		
	D->c ε		
4	Consider the grammar E->E+T/T,T->T*F/F,F->(E) id Construct predictive parsing	[L3][CO2]	[10 M]
	table and check given grammar is LL(1) or not?		
5	a) Eliminate left recursion for the following grammar	[L2][CO2]	[5M]
	i) $E \rightarrow E + T/T$ ii) $S \rightarrow Aa/b$		
	T->T*F/F B->Bad/c		
	F-> (E)/id		
	b) Explain about Left factoring with simple example?	[L3][CO2]	[5M]
6	Consider the grammar	[L3][CO2]	[10 M]
	S->AB ABad		
	A->d		
	E ->b		
	D->b ε		
	B->c		
	Construct the predictive parse table and check whether the given grammar is LL(1) or		
7	not. Consider the grammer E-ATE ¹	[I 2][CO2]	[10]) / []
7	Consider the grammar $E \rightarrow TE^1$ $E^1 \rightarrow +TE^1 \mid -TE^1 \mid \varepsilon$	[L3][CO2]	[10 M]
	Ε →+1Ε -1Ε ε Τ→FT¹		
	$T^{1} \rightarrow FT^{1} / FT^{1} \varepsilon$		
	$F \rightarrow GG^1$		
	$G^1 \rightarrow ^{\wedge} F/ \varepsilon$		
	G → F/ ε G→(E)/ id		
	Calculate FIRST and FOLLOW for the above grammar		
	Calculate LL(1) Table for the above grammar.		
8	a) Write about left most and right most derivations?	[L3][CO2]	[5M]
	b) How to eliminate ambiguity for the given Ambiguous Grammar.	[L1][CO2]	[5M]
9	Explain Error recovery in predictive parsing with an Example.	[L1][CO2]	[10M]
10	(a)Explain parse trees?	[L1][CO2]	[5M]
10	(a)Explain parse trees: (b)Describe about ambiguity?	[L2][CO2]	[5M]
	(0)Describe about amorganty:		[21/1]

QUESTION BANK 2020-2021

UNIT –III BOTTOM UP PARSING AND SEMANTIC ANALYSIS

		1	
1	a Define a syntax-directed translation.	[L1][CO3]	[2M]
	b Differences between SLR,CLR, LALR parsers?	[L2][CO3]	[2M]
	c Define Handle pruning?	[L1][CO3]	[2M]
	d What is mean by shift reduce parsing?	[L1][CO3]	[2M]
	e What is bottom up parsing?	[L1][CO3]	[2M]
2	(a) Write about handle pruning?	[L3][CO3]	[5M]
	(b) Write about SLR parsing?	[L3][CO3]	[5M]
3	Construct CLR Parsing table for the given grammar	[L3][CO3]	[10 M]
	S->CC		
	C->aC/d		
4	Perform Shift Reduce Parsing for the input string using the grammar.	[L2][CO3]	[10 M]
	S->(L) a		
	L->L,S S		
	a)(a,(a,a))		
	b)(a,a)		
5	Explain syntax directed definition with simple examples?	[L2][CO3]	[10 M]
6	Describe the evaluation order of SDT with an example.	[L2][CO3]	[10 M]
7	Discuss Type Checking with suitable examples?	[L2][CO3]	[10 M]
8	Explain the Translation scheme of SDD.	[L2][CO3]	[10 M]
9	Define augmented grammar? Construct the LR(0) items for the following Grammar?	[L1][CO3]	[10 M]
	S->L=R		
	S->R		
	L->*R		
	L->id		
	R->L		
10	Write about YACC tool?	[L3][CO3]	[10 M]

QUESTION BANK 2020-2021

UNIT –IV RUN TIME ENVIRONMENT AND INTERMEDIATE CODE GENERATION

1	a	Define Activation Record.	[L1][CO4]	[2M]
	b	Write properties of memory management	[L3][CO4]	[2M]
	c	Describe scope and life time of variable.	[L2][CO4]	[2M]
	d	Define symbol table.	[L1][CO4]	[2M]
	e	Define rules for type checking.	[L1][CO4]	[2M]
2	Dr	aw the format of Activation Record in stack allocation and explain each field in it.	[L4][CO4]	[10 M]
3	(a) Discuss about symbol table entries?		[L2][CO4]	[5M]
	(b)	Write about operations on symbol table?	[L3][CO4]	[5M]
4	De	scribe the Storage Organization with simple examples.	[L2][CO4]	[10 M]
5	De	fine Symbol table. Explain different types of Data structure for symbol table	[L1][CO4]	[10 M]
6	W	rite about Different types of Intermediate code with an Example.	[L3][CO4]	[10 M]
7	Ex	plain Representation of Three Address Codes with suitable Examples.	[L1][CO4]	[10 M]
8	Di	scuss Storage allocation strategies with suitable examples?	[L2][CO4]	[10 M]
9	W	rite about heap management mechanism.	[L3][CO4]	[10 M]
10	De	scribe about Control Flow Statements.	[L2][CO4]	[10 M]

Course Code: 18CS0514

QUESTION BANK 2020-2021

UNIT –V CODE OPTIMIZATION AND CODE GENERATION

1	a	What is the Role of peephole optimization in compilation process	[L1][CO5]	[2M]
	b	List the Issues in the design of a code generator. (any 4)	[L1][CO5]	[2M]
	c	Give the different forms in target program	[L2][CO5]	[2M]
	d	Give the applications of DAG.	[L2][CO5]	[2M]
	e	Define Dead-code elimination with example.	[L1][CO5]	[2M]
2	W	rite about all issues in code generation. Describe it.	[L3][CO5]	[10 M]
3	Ex	plain the target machine architecture?	[L2][CO5]	[10 M]
4	Describe about optimization techniques on Basic Blocks with simple examples? [L2][CO5] [
5	(a)	Discuss the various strategies in register allocation.	[L2][CO5]	[5M]
	(b)	Write about loop optimization techniques?	[L3][CO5]	[5M]
6	Ex	plain the peephole optimization Technique?	[L2][CO5]	[10 M]
7	(a)	Construct the DAG for following statement. a+b*c+d+b*c	[L3][CO5]	[5M]
	(b)	Discuss function preserving transformations?	[L2][CO5]	[5M]
8	Co	onstruct the DAG for the following basic blocks	[L3][CO5]	[10 M]
		1. t1:=4*i		
		2. $t2:=a[t1]$		
		3. t3:=4*i		
		4. t4:=b[t3]		
		5. t5:=t2*t4		
		6. t6:=prod+t5		
		7. prod:=t6		
		8. $t7:=i+1$		
		9. i:=t7		
		10. if i<=20 goto 1		
9		escribe about global data flow analysis?	[L2][CO5]	[10 M]
10		rite short notes on		
		Simple code generator	[L3][CO5]	[5M]
	ii)	Register allocation and assignment	[L3][CO5]	[5M]

Prepared by: S.JYOSHNA Assistant Professor/CSE